爱美容
当前位置: 首页 美容百科

ai论文网(爱可可AI论文推介)

时间:2023-05-30 作者: 小编 阅读量: 1 栏目名: 美容百科

与softmax置信打分不同,能量打分可证明与输入密度一致——能量较高的样本,可被解释为发生概率较低的数据,因此不太容易受到过度置信问题的影响,可显著提高检测性能。在CIFAR-10预训练WideResNet上,与softmax置信打分相比,能量打分平均FPR降低了18.03%。使用单GPU和单一环境实例,在相同计算成本和训练时间下,DreamerV2表现超过顶级的无模型单GPU智能体Rainbow和IQN。

LG - 机器学习 CV - 计算机视觉 CL - 计算与语言

1、[LG] *Energy-based Out-of-distribution Detection

W Liu, X Wang, J D. Owens, Y Li

[University of California, San Diego & University of California, Davis & University of Wisconsin-Madison]

用基于能量打分代替softmax置信打分实现分布外检测(OOD),核心思想是用一个非概率的能量函数,将较低值赋予分布内数据,较高值赋予分布外数据。与softmax置信打分不同,能量打分可证明与输入密度一致——能量较高的样本,可被解释为发生概率较低的数据,因此不太容易受到过度置信问题的影响,可显著提高检测性能。能量打分可从纯判别分类模型中导出,不需要显式依赖密度估计器,避免了JEM等生成式模型训练的优化过程。该框架内,能量可以灵活地用作所有预训练神经分类器的评分函数,也可作为可训练代价函数来明确地塑造能量表面,实现OOD检测。在CIFAR-10预训练WideResNet上,与softmax置信打分相比,能量打分平均FPR降低了18.03% 。

Determining whether inputs are out-of-distribution (OOD) is an essential building block for safely deploying machine learning models in the open world. However, previous methods relying on the softmax confidence score suffer from overconfident posterior distributions for OOD data. We propose a unified framework for OOD detection that uses an energy score. We show that energy scores better distinguish in- and out-of-distribution samples than the traditional approach using the softmax scores. Unlike softmax confidence scores, energy scores are theoretically aligned with the probability density of the inputs and are less susceptible to the overconfidence issue. Within this framework, energy can be flexibly used as a scoring function for any pre-trained neural classifier as well as a trainable cost function to shape the energy surface explicitly for OOD detection. On a CIFAR-10 pre-trained WideResNet, using the energy score reduces the average FPR (at TPR 95%) by 18.03% compared to the softmax confidence score. With energy-based training, our method outperforms the state-of-the-art on common benchmarks.

https://weibo.com/1402400261/JoDln8nmD

2、[LG] *Mastering Atari with Discrete World Models

D Hafner, T Lillicrap, M Norouzi, J Ba

[Google Brain & DeepMind & University of Toronto]

基于离散世界模型的强化学习智能体DreamerV2在Atari游戏上达到人类水平,DreamerV2单纯从强大世界模型紧凑潜空间预测中学习如何行动,世界模型采用离散表示,并与策略分开训练。使用单GPU和单一环境实例,在相同计算成本和训练时间下,DreamerV2表现超过顶级的无模型单GPU智能体Rainbow和IQN。

Intelligent agents need to generalize from past experience to achieve goals in complex environments. World models facilitate such generalization and allow learning behaviors from imagined outcomes to increase sample-efficiency. While learning world models from image inputs has recently become feasible for some tasks, modeling Atari games accurately enough to derive successful behaviors has remained an open challenge for many years. We introduce DreamerV2, a reinforcement learning agent that learns behaviors purely from predictions in the compact latent space of a powerful world model. The world model uses discrete representations and is trained separately from the policy. DreamerV2 constitutes the first agent that achieves human-level performance on the Atari benchmark of 55 tasks by learning behaviors inside a separately trained world model. With the same computational budget and wall-clock time, DreamerV2 reaches 200M frames and exceeds the final performance of the top single-GPU agents IQN and Rainbow.

https://weibo.com/1402400261/JoDuK4E6R

3、[CL] *LEGAL-BERT: The Muppets straight out of Law School

I Chalkidis, M Fergadiotis, P Malakasiotis, N Aletras, I Androutsopoulos

[Athens University of Economics and Business & University of Sheffield]

专用于法律领域的BERT模型LEGAL-BERT,聚焦法律领域,探索将BERT模型应用于下游法律任务的方法,旨在协助法律NLP研究、计算法和法律技术应用。将BERT移植到新领域的最佳策略可能不同:开箱即用原始BERT, 或通过对特定领域语料库的额外预训练来适配BERT,以及对特定领域语料库从零开始对BERT进行预训练。文中指出,当针对最终任务微调BERT对性能有重大影响时,应该始终采用扩展网格搜索。

BERT has achieved impressive performance in several NLP tasks. However, there has been limited investigation on its adaptation guidelines in specialised domains. Here we focus on the legal domain, where we explore several approaches for applying BERT models to downstream legal tasks, evaluating on multiple datasets. Our findings indicate that the previous guidelines for pre-training and fine-tuning, often blindly followed, do not always generalize well in the legal domain. Thus we propose a systematic investigation of the available strategies when applying BERT in specialised domains. These are: (a) use the original BERT out of the box, (b) adapt BERT by additional pre-training on domain-specific corpora, and (c) pre-train BERT from scratch on domain-specific corpora. We also propose a broader hyper-parameter search space when fine-tuning for downstream tasks and we release LEGAL-BERT, a family of BERT models intended to assist legal NLP research, computational law, and legal technology applications.

https://weibo.com/1402400261/JoDADieQM

4、[LG] Gradient Flow in Sparse Neural Networks and How Lottery Tickets Win

U Evci, Y A. Ioannou, C Keskin, Y Dauphin

[Google]

用稀疏神经网络梯度流改善初始化过程,试图回答:(1)为什么随机初始化训练非结构化稀疏网络的性能较差;(2)为什么(LT)和动态稀疏训练(DST)例外?实验发现,随机初始化的非结构化稀疏神经网络在初始化时梯度流表现不佳,并提出了一种可分别缩放每个神经元初始方差的替代初始化方法。相比传统稀疏训练方法,DST方法在训练过程中显著改善了梯度流;LT并没有改善梯度流,其成功在于重新学习所源自的剪枝解决方案。

Sparse Neural Networks (NNs) can match the generalization of dense NNs using a fraction of the compute/storage for inference, and also have the potential to enable efficient training. However, naively training unstructured sparse NNs from random initialization results in significantly worse generalization, with the notable exception of Lottery Tickets (LTs) and Dynamic Sparse Training (DST). In this work, we attempt to answer: (1) why training unstructured sparse networks from random initialization performs poorly and; (2) what makes LTs and DST the exceptions? We show that sparse NNs have poor gradient flow at initialization and propose a modified initialization for unstructured connectivity. Furthermore, we find that DST methods significantly improve gradient flow during training over traditional sparse training methods. Finally, we show that LTs do not improve gradient flow, rather their success lies in re-learning the pruning solution they are derived from - however, this comes at the cost of learning novel solutions.

https://weibo.com/1402400261/JoDHMcClb

5、[LG] Online Safety Assurance for Deep Reinforcement Learning

N H. Rotman, M Schapira, A Tamar

[Hebrew University of Jerusalem & Technion]

深度强化学习的在线安全保障。安全部署学习驱动系统,需要实时确定系统行为是否确定(操作环境与训练环境相同),以便在不确定的情况下默认采用合理的启发式,称为在线安全保障问题(OSAP)。本文提出三种量化决策不确定性的方法,根据用来推断不确定性的信号不同而不同。当操作环境和训练环境匹配时,采用深度强化学习方法,但当两者不匹配时,用简单的启发式进行控制。

Recently, deep learning has been successfully applied to a variety of networking problems. A fundamental challenge is that when the operational environment for a learning-augmented system differs from its training environment, such systems often make badly informed decisions, leading to bad performance. We argue that safely deploying learning-driven systems requires being able to determine, in real time, whether system behavior is coherent, for the purpose of defaulting to a reasonable heuristic when this is not so. We term this the online safety assurance problem (OSAP). We present three approaches to quantifying decision uncertainty that differ in terms of the signal used to infer uncertainty. We illustrate the usefulness of online safety assurance in the context of the proposed deep reinforcement learning (RL) approach to video streaming. While deep RL for video streaming bests other approaches when the operational and training environments match, it is dominated by simple heuristics when the two differ. Our preliminary findings suggest that transitioning to a default policy when decision uncertainty is detected is key to enjoying the performance benefits afforded by leveraging ML without compromising on safety.

https://weibo.com/1402400261/JoDOCchd8

    推荐阅读
  • 张铎妈妈令人窒息(张铎妈妈想要无片酬演戏)

    近日,家庭伦理类综艺节目《婆婆和妈妈》正在持续热播中,该节目从播出到现在也有一段时间了,马上就要到结尾阶段了。程莉莎选择了花束,没想到陈松伶的婆婆和杨子也是花束,这个新的家庭也是很有趣了。程莉莎直接将杨子当作自己的老公一样使唤,杨子本来想用对待黄圣依的方式来对待程莉莎,但是发现压根就不管用,直接就被程莉莎给碾压了。

  • 入门眼线教程(画眼线的方法)

    入门眼线教程棉签按住上眼皮,会比用手指的接触感更干爽,接触眼皮面积也会很小。在同一个点,左右反复描绘几次,直至完成整条内眼线,具体可看图中示范。外眼线的部分不需要太夸张,用棉签按住眼尾轻轻向外拉,用眼线笔贴近睫毛根部,画一条细细的眼线即可。眼尾的部分稍稍向外平拉,眼尾钝一些,可以瞎按的整个眼更自然。划过眼线之后,用棉棒在沿线位置按压一下,用来吸走多余油分,也可以防止眼线脱妆。

  • 梅艳芳帅气角色(几千人中被选中饰演梅艳芳)

    距离传奇巨星梅艳芳逝世十八年时,这部关于她的传记电影《梅艳芳》终于来了,该片将于11月12日上映。备受瞩目的梅艳芳饰演者,是模特出道、从几千人中拿到角色的新人演员王丹妮。遗憾的是,今年3月廖启智因病去世,没能赶上“徒弟”王丹妮的出师。《梅艳芳》不仅是传记片,从头到尾还穿插了大量的歌舞,这给王丹妮带来了又一挑战。经过半年的特训,王丹妮已经分不清哪部分是自己,哪部分是梅艳芳了。

  • 虾线是在背上还是肚子下(虾线到底是在背上还是肚子下)

    以下内容希望对你有帮助!虾线是在背上还是肚子下虾线是虾的消化道,在虾的背部。虾的腹部也有一条线,但是这条线并不是虾的肠道,也不是我们日常生活中所说的虾线。如果想要除掉虾线,这个时候可以准备一个牙签并将它插入虾体内,然后把牙签往上挑直到将虾线挑出来,最后把虾线完整地拽出来。还可以将虾头掰断,将虾头中的内脏挤出来,接着也能将虾线给拉出来。

  • 福特野马哪款车型最好看(福特全新SUV售价5款车型任你选)

    MachE是福特旗下将推出的一款纯电SUV,新车或将定位为紧凑级车型。近日海外媒体曝光了福特全新MachE的车型售价,新车预计将推出5款车型,海外起售价为43,895美元兑,并将于下周即将开幕的2019年洛杉矶车展上正式发布。动力方面,新车将采用纯电形式驱动,并配备前后双电机,最大续航里程可达600km。外观方面,新车前脸采用了封闭式格栅设计,车身侧面呈溜背式造型,车尾与野马跑车车型保持一致。

  • 理睬的意思是什么一个一个字解释(理睬可以怎么解释)

    我们一起去了解并探讨一下这个问题吧!理睬的意思是什么一个一个字解释理睬的意思为对别人言行给以注意并表示态度。理的释义有四个,分别为:物质本身的纹路、层次,客观事物本身的次序,如心理、肌理、条理、事理。自然科学,有时特指“物理学”,如理科、数理化、理疗。按事物本身的规律或依据一定的标准对事物进行加工、处置,如理财、理事、管理、自理、修理、总理。睬的释义为理会、搭理。

  • 九江庐山市春节期间黄码人员核酸检测点

    健康码黄码人员需接受必要的核酸检测、健康监测等措施。请提前报告社区,并在做好防护后再前往以下黄码人员核酸采样点。提交成功后,县区解码专员会在24小时内在线审核,实现网上转码全闭环操作。如还有其他需要解答的问题,请与属地指挥部或社区工作人员联系。

  • 初唐四杰是谁 盛唐四杰是谁

    与四杰同时代的张说在《赠太尉裴公神道碑》中称:“在选曹,见骆宾王、卢照邻、王勃、杨炯”。

  • 牛种类 牛有几种

    牛是我们常见的一种动物,起源于中新世,是由原古鹿类分化的一支混杂而进步的支系,牛的用途有很多,那么牛种类有哪些?乳用品种是生长牛奶和奶制品为主,如荷兰牛。肉用品种是生产牛肉和牛肉制品,如短角牛,海福特牛,安格斯牛等。役用品种主要是用来耕作,如中国的水牛,黄牛等。兼用品种是乳肉兼用、肉役,如西门塔尔牛,丹麦红牛,瑞士褐牛等。